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Abstract
Rationale Previous work has demonstrated a profound
effect of N-methyl-D-aspartic acid receptor (NMDAR)
antagonism in the infralimbic cortex (IL) to selectively
elevate impulsive responding in a rodent reaction time
paradigm. However, the mechanism underlying this effect
is unclear.
Objectives This series of experiments investigated the
pharmacological basis of this effect in terms of
excitatory and inhibitory neurotransmission. We tested
several pharmacological mechanisms that might produce
the effect of NMDAR antagonism via disruption or
dampening of IL output.
Methods Drugs known to affect brain GABA or
glutamate function were tested in rats pre-trained on a
five-choice serial reaction time task (5-CSRTT) following
either their systemic administration or direct administration
into the IL.
Results Systemic lamotrigine administration (15 mg/kg),
which attenuates excess glutamate release, did not counter-

act the ability of the intra-IL NMDAR antagonist 3-((R)-2-
carboxypiperazin-4-yl)-propyl-L-phosphonic acid ((R)-
CPP) to increase premature responding on the 5-CSRTT.
Putative elevation of local extracellular glutamate via intra-
IL infusions of the selective glutamate reuptake inhibitor

DL-threo-β-benzyloxyaspartate as well as local α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptor an-
tagonism also had no effect on this task. However, intra-IL
infusions of the GABAA receptor agonist muscimol
produced qualitatively but not quantitatively comparable
increases in impulsive responding to those elicited by (R)-
CPP. Moreover, the GABAA receptor antagonist bicuculline
blocked the increase in impulsivity produced by (R)-CPP
when infused in the IL.
Conclusions These findings implicate glutamatergic and
GABAergic mechanisms in the IL in the expression of
impulsivity and suggest that excessive glutamate release
may not underlie increased impulsivity induced by local
NMDA receptor antagonism.

Keywords Impulsivity . Prefrontal cortex . Glutamate .

AMPA . NMDA .GABA

Introduction

Individual differences in premature responding on the five-
choice serial reaction time task (5-CSRTT) predict vulner-
ability to the reinforcing effects of cocaine and may indicate
a trait impulsivity phenotype of relevance to attention
deficit hyperactivity disorder and drug addiction (Blondeau
and Dellu-Hagedorn 2007; Dalley et al. 2007; Everitt et al.
2008). Understanding the contributions of excitatory and
inhibitory mechanisms controlling impulsive responding in
the prefrontal cortex (PFC) may thus be relevant for the
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treatment of such disorders. We previously reported that
localised infusions of the N-methyl-D-aspartic acid receptor
(NMDAR) antagonist 3-((R)-2-carboxypiperazin-4-yl)-pro-
pyl-L-phosphonic acid; ((R)-CPP) produced significant and
selective increases in premature responding on the 5-
CSRTT when administered into the infralimbic (IL) but
not the prelimbic (PL) PFC (Murphy et al. 2005). However,
the precise mechanisms by which NMDAR blockade
produced this effect are unclear.

NMDAR antagonism in the IL cortex may act via
several mechanisms to effect behavioural changes. First, we
hypothesised that premature responses provoked by intra-IL
NMDAR antagonism may be a consequence of increased
extracellular glutamate availability (see Ceglia et al. 2004;
Moghaddam et al. 1997), which may increase and/or
disrupt local glutamatergic transmission such that output
signals are dysregulated and behavioural control is im-
paired. To test this hypothesis, we attempted to block
excess glutamate release with lamotrigine (Cunningham
and Jones 2000) and, in a subsequent experiment, to elevate
extracellular glutamate with a selective glutamate reuptake
inhibitor (DL-threo-β-benzyloxyaspartate). Alternatively,
NMDAR antagonism may dampen local fast synaptic
transmission and decrease output signals, also impairing
behavioural control. To test this hypothesis, we adminis-
tered an α-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid (AMPA) receptor antagonist to block
excitatory neurotransmission and the GABAA receptor
agonist muscimol to promote inhibitory neurotransmission
in the IL. We report that intra-IL infusions of muscimol
produce a profile of behavioural effects qualitatively similar
to that of (R)-CPP. Thus, excessive inhibition mediated by
GABAA receptors may be a candidate mechanism under-
lying the effects of intra-IL (R)-CPP on impulsivity.
Therefore, in a final experiment, we tested whether
blockade of GABAA transmission in the IL with bicuculline
could abolish the effect of (R)-CPP on impulsivity.

Methods and materials

Subjects

Subjects were male, Lister Hooded rats (Charles River, UK)
weighing 300–400 g at the start of each experiment (n=31,
total for whole study). During behavioural testing, animals
were maintained on 18 g of rat chow per day and had ad
libitum access to water. Animals were housed in pairs, and
then singly following surgery under a reverse light cycle
(lights on from 1900–0700 hours). Testing took place
between 0900 and 1900 hours, 5 to 7 days each week. All
experiments were carried out in accordance with the UK
Animals (Scientific Procedures) Act 1986 (PPL: 80/2234).

Subjects included in each experiment were confirmed to
have correctly located injector placements. Six subjects
were used for experiment 1. Seven subjects were used for
experiment 3, five of which were then used in experiment
2. For experiment 4, six subjects had injector tips located in
the IL whilst seven subjects had injector tips in the PL. Five
subjects were used for experiment 5.

Behavioural apparatus

A detailed description of the behavioural apparatus has
been described previously (Carli et al. 1983; Murphy et
al. 2005). Briefly, 20 25×25×25 cm nine-hole operant
conditioning chambers (8 boxes built in the Department
of Experimental Psychology, Cambridge, UK; 12 boxes
from Campden Instruments, UK) were used, each
contained within a ventilated and sound-attenuated cham-
ber and illuminated by a 3-W house light. Nine evenly
spaced square holes (2.5×2.5×4 cm) each containing a 3-
W light were set into the curved aluminium wall at the
rear of the box, 2 cm above the wire grid floor. Five of
these holes were uncovered and available. An infrared
beam located at the entrance to each hole enabled
detection of nose-poke responses. A food magazine was
located in the middle of the opposite wall into which food
pellets could be dispensed (Noyes dustless pellets, 45 mg;
Sandown Scientific, UK). The distance between the
centre hole at the rear of the box and the magazine was
25 cm. A hinged door with a microswitch or infrared
beam allowed access to the magazine and recording of
entries. The boxes were controlled by Whisker software
(Cardinal and Aitken 2010).

Behavioural training

Rats were trained on the 5-CSRTT as described previously
(Murphy et al. 2005), and the task sequence has been
described elsewhere (see Dalley et al. 2002, Fig. 2).
Subjects were trained to make nose-poke responses into
one of five holes in the front array upon brief stimulus
illumination of the light located therein. The duration of the
stimulus light was gradually reduced over 12 training stages
from 30 to 0.5s. To begin a trial, the rats were required to
enter the food magazine panel, and the next stimulus was
illuminated after a 5-s intertrial interval. Following stimulus
presentation, a correct nose-poke response was rewarded
with a food pellet and illumination of the magazine light.
Retrieval of the reward by entering the magazine initiated
the next trial. A response prior to stimulus onset (a
‘premature’ response) or a failure to respond in a 5-s
limited hold period after stimulus presentation (an ‘omis-
sion’) was punished by a 5-s timeout period in which the
house light was extinguished and no reward was delivered.
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Subsequent responses in any hole after the initial correct
response or within the timeout period following an omitted or
incorrect response were classified as perseverative respond-
ing. Rats received 5–7 sessions per week until a high level of
stable performance was reached (≥80% accuracy, ≤15%
omissions for the 5-CSRTT). Each session consisted of 100
completed trials and lasted a maximum of 30 min.

Surgery

Subjects were anaesthetised with either inhaled isoflurane
(induced at 5%, maintained at 1–2%, flow rate 2 l/min) and
secured in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA, USA), fitted with atraumatic ear bars and an
anaesthetic delivery nose cone fitted on the incisor bar
(David Kopf Instruments) or with an intra-muscular
injection of ketamine (Ketaset, 100 mg/kg; Vet Drug, Bury
St Edmunds, UK) and xylazine (Rompun, 10 mg/kg, Vet
Drug), and then secured in a stereotaxic frame. For all
surgeries, the incisor bar was set at −3.3 mm relative to the
interaural line for a flat skull position. Postoperative local
anaesthetic was applied to the surgical wound.

Bilateral, 22-gauge stainless steel guide cannulae (Plastics
One, UK) were implanted in the medial region of the PFC
using standard stereotaxic techniques and were secured to the
skull with bone screws and dental cement. The coordinates
used were: AP +3.0 mm, L ±0.75 mm and DV −2.2 mm
(Paxinos and Watson). After implantation, the guide cannulae
were blocked with obturators and flush with the end of the
guide, with the entire unit protected by a plastic dust cap.
After surgery, the rats were singly housed and given ad
libitum access to food and water for at least 5 days recovery
before retraining on the behavioural task.

Microinfusion procedure

The guide cannulae allowed access to the PL or IL regions of the
PFC. For PL infusions, 29-gauge injectors extending 1.5 mm
beyond the end of the guides were used (−3.7 mm from dura).
For IL infusions, 29-gauge injectors extending 3.0 mm beyond
the end of the guides were used (−5.2 mm from dura).

The rats were habituated to the microinfusion proce-
dure as previously described (Murphy et al. 2005).
Intracranial infusions were always given on a 3-day cycle,
with each infusion preceded by a baseline day and followed
by a washout day where rats were not behaviourally tested.

Experiment 1: effects of NMDA receptor blockade
and systemic lamotrigine

The rats were pretreated with systemic lamotrigine
(LTG) prior to intra-IL administration of (R)-CPP. LTG
was administered at 15 mg/kg (2 ml/kg) with the control

group receiving the same volume of vehicle. LTG was
dissolved in 50% propylene glycol in distilled water and
administered by intra-peritoneal injection 2 h prior to
infusion to allow for maximal drug absorption into the
brain (Castel-Branco et al. 2002). The rats were tested in a
counterbalanced 2×2 drug design: vehicle or LTG versus
saline or intra-IL (R)-CPP (50 ng/side). The rats received
each combination of treatments in a balanced Latin square
design.

Experiment 2: effects of selective glutamate reuptake
inhibition on impulsivity

In this experiment we putatively enhanced extracellular
glutamate by blocking synaptic reuptake with intra-IL
administered DL-threo-β-benzyloxyaspartate (DL-TBOA).

DL-TBOA (Tocris, UK) was dissolved in sterile phosphate-
buffered saline (PBS) and administered in ascending doses
on subsequent days (vehicle, 50 ng (0.388 mM), 500 ng
(3.88 mM)) in a volume of 0.5 μl per side. This was done in
case of excessive excitotoxicity at the highest dose, although
previous findings suggest that acute increases in glutamate
produced by transporter blockade are not sufficient to induce
excitotoxicity (Massieu et al. 1995).

Experiment 3: effects of the AMPA receptor antagonist
NBQX

In this experiment, an α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid receptor (AMPAR) antagonist
was separately administered intra-IL prior to testing on
the 5-CSRTT. NBQX di-sodium salt (2,3-dihydroxy-6-
nitro-7-sulfamoylbenzo(f)quinoxaline) (Tocris, UK) was
dissolved in sterile saline and administered in the IL at
three doses: vehicle, 50 ng or 500 ng in 0.5 μl per side
in a Latin square counterbalanced design (three levels).
The doses were based on previous in vivo behavioural
studies (e.g. Biondo et al. 2005; Choi et al. 2000; Ikeda
et al. 2003; Nakamura et al. 2000).

Experiment 4: effects of the GABA receptor agonist
muscimol on impulsivity

In experiment 4, we tested the effects of the GABAA

receptor agonist muscimol in the PL or IL on the 5-CSRTT.
Different subjects received either IL or PL infusions
depending on cannulae location. Muscimol (Tocris, UK)
was dissolved in PBS at a concentration of 1 μg/μl.
Bilateral infusions aimed at either the PL or IL cortex were
delivered at a dose of 0.5 μg and a volume of 0.5 μl/side
over 1 min. Doses were chosen based on previous research
(Coutureau and Killcross 2003).

Psychopharmacology (2012) 219:401–410 403



Experiment 5: effects of bicuculline on (R)-CPP
induced impulsivity

Bicuculline methiodide (Fluka, UK; 50 ng/side) was
dissolved in PBS at a concentration of 1 μg/μl (Koya et
al. 2009). Bilateral infusions aimed at the IL cortex were
delivered at a concentration of 0.5 μg and a volume of
0.5 μl/side over 1 min, 5 min before the intra-IL infusion of
(R)-CPP (50 ng/side).

Histology

After behavioural testing was completed, subjects were
anaesthetised with a lethal dose of sodium pentobarbital
(Euthatal, 200 mg/ml, Genus Express, UK) and perfused
transcardially with 0.01 M PBS followed by 4% parafor-
maldehyde. The brains were removed and post-fixed in 4%
paraformaldehyde overnight. Prior to being sectioned, the
brains were transferred to a 20% sucrose solution in 0.01 M
PBS as a cryoprotectant. Coronal sections were cut at
60 μm and every third section taken for cresyl violet
staining. The locations of injector cannulae were mapped
onto standardised sections of the rat brain (Paxinos and
Watson 1998).

Data analysis

Data were analysed using SPSS 12.0.1 (SPSS Inc.,
Chicago, IL, USA). Six variables were analysed: the
percentage of correct responses made (number of correct
responses/total correct and incorrect responses), percentage
of responses omitted (number of omissions/total number of
correct, incorrect and omitted responses), percentage of
premature responses (number of premature responses/total
number of correct, incorrect and omitted responses), latency
to make a correct response, latency to collect reward and
perseverative responses. Behavioural data were subjected to
analysis of variance (ANOVA) using a general linear model
within-subjects design with appropriate factors and levels
for the experimental design, using SPSS’s type-III sum-of-
squares method. Homogeneity of variance was verified
using Levene’s test (Levene 1960) and skewed data were
subjected to appropriate transformations. All tests of
significance were performed at α=0.05. Full factorial
models were used unless otherwise stated. For repeated
measures analysis, Mauchly’s test of sphericity (Mauchly
1940) of the covariance matrix was applied and the degrees
of freedom df were corrected to more conservative values
using the Huynh–Feldt epsilon ε (Huynh and Feldt 1970) to
correct any violations in the sphericity assumption (Cardinal
and Aitken 2006). Significant interactions were investigated
with post hoc tests using the Šidák procedure to reduce the
probability of type I errors.

Results

Histology

All cannulae placements were accurately located in the
appropriate brain areas. Figure 1 shows a composite
schematic of PL and IL cannulae placements for all
experiments.

Experiment 1: effects of NMDA receptor blockade
and systemic lamotrigine

Intra-IL infusions of (R)-CPP significantly increased pre-
mature responding on the 5-CSRTT but this effect was not
antagonised by pre-treatment with 15 mg/kg LTG. A 2×2
ANOVA revealed a main effect of (R)-CPP (F1,5=19.6, p=
0.007; see Fig. 2 and Table 1). LTG alone had no
significant effect on any behavioural measure on the 5-
CSRTT. Intra-IL (R)-CPP also significantly decreased
accuracy (main effect; F1,5=7.3, p=0.043) and increased

Fig. 1 Composite diagram illustrating the placement of injector tips in
PL cortex (light grey) and IL cortex (dark grey) across all experiments.
Adapted from Paxinos and Watson 1998 (from Bregma: top +3.7 mm;
middle +3.2 mm; bottom +2.7 mm)
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omissions (main effect; F1,5=87.8, p<0.001) and slowed
correct response latencies (F1,5=8.0, p=0.037).

Experiment 2: effects of selective glutamate reuptake
inhibition on impulsivity

Intra-IL DL-TBOA produced no significant effects on
behavioural performance (Table 2). The highest dose
(500 ng) tended to increase omissions, though this effect
did not reach significance (F2,8=4.07, p=0.06). Increasing
doses of DL-TBOA tended to slow correct response
latency; this effect approached but did not reach signifi-
cance (F2,8=3.63, p=0.075).

Experiment 3: effects of the AMPA receptor antagonists
NBQX

There were no significant effects of NBQX on behavioural
performance on the 5-CSRTTwhen administered directly in
the IL (Table 3).

Experiment 4: effects of the GABA receptor agonist
muscimol on impulsivity

Infusions of muscimol into the IL, but not PL, significantly
increased premature responding on the 5-CSRTT (Fig. 3
and Table 4). Percentages of premature responses were
subjected to an arcsine transformation to satisfy homoge-
neity of variance. The ANOVA revealed a significant main
effect of the drug (F1,11=11.2, p=0.007), a between subject
effect of brain region (F1,11=10.8, p=0.007) and a
significant drug × brain region interaction (F1,11=5.14,
p=0.045). Pair-wise comparisons revealed that muscimol
significantly increased premature responding when adminis-
tered in the IL (p=0.002) but had no effect on premature
responding when administered in the PL (p=0.477).

Muscimol also produced statistically significant but qual-
itatively moderate effects on accuracy, omissions, persevera-
tive responding and reward collection latency, but none of
these effects were modulated by the site of drug infusion in the
mPFC (see Table 4). The decline in accuracy after muscimol
infusion was qualitatively similar in both brain areas (main
effect of drug, F1,11=13.64, p=0.004) but there was no main
effect of brain region nor interaction, (F ratios <1).

Muscimol also increased the percentage of omitted
responses when administered to either brain area (main
effect of drug (F1,11=24.28, p<0.001), but there was no
significant main effect of brain region and no interaction,
F ratios<1). Muscimol also increased perseverative
responding when infused into the PL and IL (F1,11=8.7,
p=0.013) whilst slowing reward collection latencies
(F1,11=9.882, p=0.009). However, correct response latency
was not significantly affected by muscimol, indicating that
animals were not slowed in choosing the correct stimulus
and that the slowing of magazine latencies was unlikely to be
a sedative or a motor effect.

Experiment 5: effects of bicuculline on (R)-CPP induced
impulsivity

As observed in experiment 1, premature responses in-
creased following intra-IL infusions of (R)-CPP. This effect

Fig. 2 Percentage of premature responding in the 5-CSRTT following
the infusion of 50 ng/side (R)-CPP into IL cortex in rats pretreated
with either 15 mg/kg LTG or vehicle (n=6). (Asterisk) indicates main
effect of drug 2 (veh+veh, LTG+veh vs. veh+(R)-CPP, LTG+(R)-CPP)

Table 1 Effects of 50 ng/side (R)-CPP in IL cortex and 15 mg/kg LTG (i.p.) on the 5-CSRTT

Drug Correct (%) Omissions (%) Correct latency (s) Collection latency (s) Persev nose pokes

Veh+veh 81.9±3.6 15.8±6.7 0.56±0.03 4.06±2.4 61.5±12.6

Veh+LTG 80.2±3.5 16.1±5.5 0.58±0.04 3.08±1.27 55±11.4

CPP+veh 63.8±6.1a 31.1±6.4a 0.68±0.06a 2.14±0.84 64.2±9.6

CPP+LTG 71.1±5.8 41.3±5.4 0.81±0.08 4.24±1.92 78.2±16.2

Values are means±SEM
a Significant with respect to veh+veh
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was antagonised by pre-treatment with intra-IL infusions of
bicuculline (Fig. 4 and Table 5). The ANOVA revealed
main effects of bicuculline (F1,5=14.56, p=0.012), (R)-CPP
(F1,5=14.68, p=0.01) and a non-significant interaction,
p=0.069. As a significant omnibus interaction is not
required if family-wise error is controlled (Cardinal and
Aitken 2006), we conducted pair-wise comparisons using
Šidák’s correction, which revealed an increase in premature
responding following IL infusions of (R)-CPP (p=0.024).
This effect was prevented by prior bicuculline infusion (p=
0.015) at a dose which itself also reduced premature
responding (p=0.019).

Consistent with the results of experiment 1, intra-IL
(R)-CPP increased omitted responses (main effect of (R)-
CPP; F1,6=13.06, p=0.015). This effect was neither
antagonised nor potentiated by intra-IL bicuculline. Meas-
ures of accuracy, perseverative responding and response
latencies (correct and collection latencies) were not signif-
icantly affected (see Table 5) by these manipulations.
Although marginal main effects of (R)-CPP were observed
for correct (p=0.065) and collection (p=0.074) latencies,
these did not interact with the prior infusion of bicuculline
(both ps>0.15).

Baseline analysis

Baseline accuracy and omissions performance levels for all
rats included in the final analysis was stable, as assessed
over 12 different sessions: 3 preoperative training sessions
immediately prior to surgery, 4 postoperative restabilization
sessions (including 2 mock infusions) and the baseline
session immediately prior to each infusion day (no
significant effects of day on attentional accuracy
(F11,132=1.290, NS) or omissions (F3.257,39.089=0.805, ε=

0.296, NS)). Baseline accuracy and omissions were also
stable as assessed over 11 sessions (3 preoperative, 4
postoperative (including a mock infusion) and the baseline
day prior to each infusion) in the two combined cohorts used
for the bicuculline study (n=6) F10,60=1.319, p=.241 and
F10,60=1.604, p=.127, respectively.

Discussion

The main findings may be summarized as follows:
enhancing GABAergic transmission via infusions of the
GABAA receptor agonist muscimol into the IL but not the
PL dramatically increased premature responding, with a
relative lack of effect on other performance variables; a
profile that was qualitatively similar to that previously
shown following the NMDAR antagonist (R)-CPP and
replicated here. In addition, we show that blockade of
GABAA receptor transmission in the IL is sufficient to
prevent the increase in impulsivity induced by (R)-CPP.

Previous findings suggest that the effects of the
NMDAR antagonist may be a direct result of excess
extracellular glutamate (see Ceglia et al. 2004; Moghaddam
et al. 1997). However, we could not find any evidence to
substantiate this conclusion using direct pharmacological
manipulation of glutamate levels; (1) the systemically
administered glutamate release blocker LTG failed to block
premature responding despite presumably decreasing glu-
tamate release in the PFC and (2) intra-IL DL-TBOA failed
to increase premature responding despite its putative action
to elevate extracellular glutamate. Furthermore, the effect of
NMDAR antagonism in the IL was not mimicked by intra-
IL AMPA receptor antagonism. However, some degree of
caution is necessary in the interpretation of these results as

Table 2 Effects of intra-IL DL-TBOA on 5-CSRTT performance

Drug Correct (%) Omissions (%) Premature (%) Correct latency (s) Collection latency (s) Persev nose pokes

PBS 92.6±1.7 4.4±0.9 4.0±1.4 0.47±0.04 1.40±0.08 50.2±8.0

50 ng 91.1±1.3 3.4±0.8 5.6±3.4 0.50±0.03 1.49±0.09 56.2±8.1

500 ng 90.0±0.6 9.2±2.5 4.0±1.3 0.56±0.03 1.46±0.10 46.2±13.6

Values are means±SEM

PBS phosphate-buffered saline

Table 3 Effects of intra-IL NBQX on 5-CSRTT performance

Drug Dose Correct (%) Omissions (%) Premature (%) Correct latency (s) Collection latency (s) Persev nose pokes

NBQX (n=7) Saline 91.5±1.0 4.7±1.8 6.7±2.4 0.53±0.03 1.6±0.2 50.7±8.8

50 ng 92.9±1.4 6.6±2.5 5.7±1.7 0.49±0.02 2.4±1.0 53.7±9.7

500 ng 90.7±1.8 7.1±2.4 6.4±1.4 0.53±0.04 1.4±0.1 49.6±6.4

Values are means±SEM
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the assumption that changes in extracellular levels of
glutamate necessarily reflect changes in neuronal firing
may not be valid in all cases (Obrenovitch et al. 2000).
Thus, although extracellular glutamate levels increase after
NMDA blockade, the resultant behavioural effects may be
independent of changes in extracellular glutamate.

The present data shed light on two parallel questions: (1)
the role of IL in inhibitory control as measured in the 5-
CSRTT, and (2) glutamatergic-GABAergic interactions in
the IL cortex that modulate its inhibitory control function.
The most striking result was that GABAA receptor
activation in the IL (but not PL) produced similar elevations
of premature responding as did infusions of the NMDAR
antagonist (R)-CPP. The restriction of this effect to the IL
supports the anatomical dissociation reported earlier by
Murphy et al. (2005), and recent reports of limited diffusion
of muscimol support the anatomical selectivity of this effect
(Allen et al. 2008). The effect of muscimol infusions was
most pronounced with respect to premature responding.
Accuracy and omissions were also impaired by muscimol
in the mPFC; however, the relatively subtle reduction in

performance suggests there was no gross behavioural
impairment.

The similarity of GABAA agonist and NMDAR antag-
onist behavioural effects is intriguing given that these
manipulations superficially have opposing neurochemical
effects; for example, whereas muscimol acts to augment
inhibitory GABAergic neurotransmission in the PFC
(Matsumoto et al. 2003), NMDAR antagonists increase
the tonic firing activity in mPFC neurons (Suzuki et al.
2002). However, NMDA and GABA receptor functions are
closely linked, especially in the PFC. GABAergic neurons
in the PFC are exclusively interneurons shown to be
dominant in regulating the activity of projecting pyramidal
cells (Benes and Berretta 2001). Therefore, the most
straightforward explanation for the present data in terms
of cortical microcircuitry is that GABAergic interneurons
mediate the increase in premature responses observed after
NMDA blockade. Excess glutamate after NMDA blockade
may stimulate GABAergic interneurons, resulting in inhi-
bition of output pyramidal neurons. GABAA receptor
activation thus appears to act as a ‘reversible lesion’ (e.g.
Amat et al. 2005; Coutureau and Killcross 2003; de Wit et
al. 2006; Fuchs et al. 2004; McFarland et al. 2004; Yin et
al. 2006) inhibiting transmission in the IL such that output
is disrupted or attenuated. Indeed, fibre-sparing, cell body
lesions of the IL cause persistent deficits in inhibitory
control on the 5-CSRTT (Chudasama et al. 2003) consistent
with that hypothesis. In addition, GABAA receptor block-
ade by bicuculline reversed the effects of NMDA blockade.
It should be noted that bicuculline reduced premature
responding when administered alone in the IL. However,
since this effect was behaviourally selective with no
significant effects on other behavioural measures, we
conclude that blocking endogenous GABAergic tone at
GABAA receptors in the IL is sufficient to reduce
impulsivity.

It is possible that a ‘shutdown’ of IL output similarly
accounts for the NMDAR antagonism findings of enhanced
impulsivity. However, a problem with this interpretation is
that AMPAR antagonism with NBQX in the IL cortex had
no effect on task performance. This may have been due to
an inadequate dose; however, the doses used are reportedly

Fig. 3 Proportion of premature responses (arcsine transformation)
following either the administration of PBS or muscimol into the PL
(n=6) or IL (n=7). Asterisk indicates p<0.05 compared to the PBS
control condition. Mean raw scores (SEM) of percentage premature
responding. PL, percentage premature responding: mean=3.7%
(0.07); muscimol, percentage premature responding: mean=8.8%
(3.4). IL, percentage premature responding: mean=8.4% (2.1);
muscimol, percentage premature responding: mean=33.9% (7.3)

Table 4 Effects of intra-PL or intra-IL muscimol on 5-CSRTT performance

PFCArea Drug Correct (%) Omissions (%) Correct latency (s) Collection latency (s) Persev nose pokes

PL PBS 88.2±2.1 5.8±2.6 0.50±0.02 1.07±0.03 30.3±5.7

Muscimol 69.1±8.8a 19.2±3.4a 0.68±0.15 1.80±0.34a 84.3±27.2a

IL PBS 84.6±3.6 4.9±1.3 0.59±0.04 1.50±0.06 62.9±20.2

Muscimol 71.7±4.1a 29.4±5.6a 0.67±0.05 1.94±0.19a 94.7±33.5a

Values are means±SEM
a Significant with respect to PBS
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active at other brain sites in different behavioural paradigms
(Biondo et al. 2005; Burns et al. 1994; Choi et al. 2000;
Ikeda et al. 2003; Nakamura et al. 2000; Winters and
Bussey 2005). NBQX is a selective, competitive AMPA/
kainate receptor antagonist (Sheardown et al. 1990). In
principle, AMPAR blockade should attenuate fast excitato-
ry synaptic transmission and NMDAR-mediated transmis-
sion concurrently (see Robbins and Murphy 2006).
However, recent work with genetic knock-out animals
indicates possible AMPA-independent activation of NMDA
receptors (Bannerman et al. 2003; reviewed by Bannerman
et al. 2006; Schmitt et al. 2003), challenging the prevailing
view of the functional coupling of NMDA and AMPA
receptors in controlling pyramidal cell output. The present
results indicate that non-NMDA receptor blockade in the
mPFC is insufficient to induce failed response inhibitory
control.

The lack of behavioural effect of LTG in this study
contrasts with evidence that LTG is beneficial in other
cognitive tasks disrupted by NMDAR antagonism,
including reversal learning (Idris et al. 2005), despite

the use of similar doses. However, the present results are
supported by recent work demonstrating that a broader
range of doses of LTG have no effects on any measure of
the 5-CSRTT (Shannon and Love 2005). It is thus possible
that different mechanisms mediate NMDAR antagonist-
impaired performance in reversal learning and 5-CSRTT
task paradigms, though both clearly involve a component
of inhibitory control. This difference may lie in the nature
of the failure of a specific type of inhibitory control
unique to each task. Taken together, the lack of behav-
ioural effects of both DL-TBOA and LTG lead us to reject
the hypothesis that increased impulsive responding was
simply due to excess glutamate release in the IL cortex
and resulting hyperexcitation.

Conclusions

The equivalent effects of NMDAR antagonism and
GABAA receptor activation in the IL cortex on the control
of impulsive responding do not fit with the notion that
NMDAR antagonism ‘disinhibits’ GABAergic interneur-
ons, leading to an excess of glutamate release (Konradi and
Heckers 2003), and that it is the excess glutamate that is the
primary cause of neuronal dysfunction. Indeed, GABAA

receptor activation by muscimol increases GABAergic
tone, and GABAA receptor antagonism prevented the effect
of NMDAR antagonism on impulsivity. These results
suggest that NMDA and GABAA receptors exert opposing
effects on pyramidal cell output, with respective antago-
nism and agonism producing similarly dysregulated inhib-
itory control. The lack of effects of AMPAR antagonism
argues against a hypothesis of ‘fast excitatory shutdown’ of
the cortical microcircuitry—but does not preclude the
possibility of diminished and dysregulated efferent trans-
mission from pyramidal neurons as the cause of failure of
inhibitory control.

These results highlight the complexity of the func-
tional microcircuitry of the corticocortical glutamate and
GABA systems in the PFC (Benes and Berretta 2001) as
illustrated by the fact that different subpopulations of
interneurons receive different strengths of glutamatergic

Fig. 4 Percentage of premature responding in the 5-CSRTT following
the infusion of 50 ng/side (R)-CPP into IL cortex in rats pretreated
with either 50 ng/side bicuculline or vehicle (n=6). Asterisk indicates
main effect of drug 1 (veh+veh, veh+(R)-CPP vs. BIC+veh, BIC+(R)-
CPP) and number sign indicates main effect of drug 2 (veh+veh, BIC
+veh vs. veh+(R)-CPP, BIC+(R)-CPP). Plus sign indicates signifi-
cance with respect to veh+veh

Table 5 Effects of 50 ng/side (R)-CPP in IL cortex, after 50 ng/side of bicuculline (BIC) or veh on the 5-CSRTT

Drug Correct (%) Omissions (%) Correct latency (s) Collection latency (s) Persev nose pokes

Veh+veh 65.3±9.9 22.3±12.0 0.69±0.09 1.36±0.06 112.0±37.2

Veh+(R)-CPP 67.9±3.5 43.2±4.8* 0.79±0.12 2.70±0.96 100.0±15.2

BIC+veh 76.9±6.0 24.2±5.4 0.75±0.09 2.17±0.72 146.7±62.8

BIC+(R)-CPP 62.6±9.3 57.3±9.7 0.95±0.11 13.4±5.6 96.5±18.9

Values are means±SEM
a Significant with respect to veh + veh
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drive and express unique complements of glutamate
receptor subunits (Lewis and Moghaddam 2006). For
example, overactivation of GABAergic chandelier cells
may disrupt the timing of inhibition necessary to synchro-
nize pyramidal neuron firing, thus disrupting cortical
output transmission (Benes and Berretta 2001; Lewis and
Moghaddam 2006). Future work should explore the
apparently critical role of cortical pyramidal output in
the IL with respect to inhibitory response control in the 5-
CSRTT and related tasks.
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